Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exogenous Melatonin Mitigates Methyl Viologen-Triggered Oxidative Stress in Poplar Leaf.

Identifieur interne : 000F11 ( Main/Exploration ); précédent : 000F10; suivant : 000F12

Exogenous Melatonin Mitigates Methyl Viologen-Triggered Oxidative Stress in Poplar Leaf.

Auteurs : Fei Ding [République populaire de Chine] ; Gang Wang [République populaire de Chine] ; Shuoxin Zhang [République populaire de Chine]

Source :

RBID : pubmed:30400163

Descripteurs français

English descriptors

Abstract

As a ubiquitous molecule, melatonin plays a crucial role in tolerance to multiple stresses in plants. In the present work, we report the role of exogenous melatonin in relieving oxidative stress induced by methyl viologen (MV) in poplar (Populus alba × Populus glandulosa) leaf. Leaf discs pretreated with melatonin exhibited increased tolerance to MV-mediated oxidative stress. It was observed that melatonin pretreatment effectively reduced membrane damage and lipid oxidation as demonstrated by decreased relative electrolyte leakage and malonaldehyde content in poplar leaf discs. Exogenous melatonin also stimulated activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX), and enhanced accumulation of non-enzymatic antioxidants of AsA and GSH in leaf discs exposed to MV. In addition, pretreatment of melatonin prompted expression of genes for those antioxidant enzymes. Notably, exogenous melatonin increased expression of P5CS, a key gene for proline biosynthesis, under MV treatment. It was further observed that pretreatment with melatonin boosted activity of P5CS as well as accumulation of proline in leaf discs under MV-mediated oxidative stress. Collectively, this work provides evidence for the ameliorative effect of melatonin on MV-induced oxidative stress in poplar leaf.

DOI: 10.3390/molecules23112852
PubMed: 30400163
PubMed Central: PMC6278511


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exogenous Melatonin Mitigates Methyl Viologen-Triggered Oxidative Stress in Poplar Leaf.</title>
<author>
<name sortKey="Ding, Fei" sort="Ding, Fei" uniqKey="Ding F" first="Fei" last="Ding">Fei Ding</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China. fding@nwafu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Gang" sort="Wang, Gang" uniqKey="Wang G" first="Gang" last="Wang">Gang Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China. wang20180823@sina.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Guizhou Academy of Forestry, Guiyang 550005, Guizhou, China. wang20180823@sina.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Guizhou Academy of Forestry, Guiyang 550005, Guizhou</wicri:regionArea>
<wicri:noRegion>Guizhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Shuoxin" sort="Zhang, Shuoxin" uniqKey="Zhang S" first="Shuoxin" last="Zhang">Shuoxin Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China. sxzhang@nwafu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan 711600, Shaanxi, China. sxzhang@nwafu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan 711600, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30400163</idno>
<idno type="pmid">30400163</idno>
<idno type="doi">10.3390/molecules23112852</idno>
<idno type="pmc">PMC6278511</idno>
<idno type="wicri:Area/Main/Corpus">000B86</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B86</idno>
<idno type="wicri:Area/Main/Curation">000B86</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B86</idno>
<idno type="wicri:Area/Main/Exploration">000B86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Exogenous Melatonin Mitigates Methyl Viologen-Triggered Oxidative Stress in Poplar Leaf.</title>
<author>
<name sortKey="Ding, Fei" sort="Ding, Fei" uniqKey="Ding F" first="Fei" last="Ding">Fei Ding</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China. fding@nwafu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Gang" sort="Wang, Gang" uniqKey="Wang G" first="Gang" last="Wang">Gang Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China. wang20180823@sina.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Guizhou Academy of Forestry, Guiyang 550005, Guizhou, China. wang20180823@sina.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Guizhou Academy of Forestry, Guiyang 550005, Guizhou</wicri:regionArea>
<wicri:noRegion>Guizhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Shuoxin" sort="Zhang, Shuoxin" uniqKey="Zhang S" first="Shuoxin" last="Zhang">Shuoxin Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China. sxzhang@nwafu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan 711600, Shaanxi, China. sxzhang@nwafu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan 711600, Shaanxi</wicri:regionArea>
<wicri:noRegion>Shaanxi</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecules (Basel, Switzerland)</title>
<idno type="eISSN">1420-3049</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antioxidants (metabolism)</term>
<term>Cell Membrane (drug effects)</term>
<term>Cell Membrane (metabolism)</term>
<term>Gene Expression Regulation, Enzymologic (drug effects)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Melatonin (pharmacology)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Paraquat (metabolism)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Populus (drug effects)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Proline (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antioxydants (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Membrane cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Mélatonine (pharmacologie)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Paraquat (métabolisme)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Proline (métabolisme)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Paraquat</term>
<term>Proline</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Membrane</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Plant</term>
<term>Oxidative Stress</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Membrane cellulaire</term>
<term>Populus</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antioxydants</term>
<term>Espèces réactives de l'oxygène</term>
<term>Feuilles de plante</term>
<term>Membrane cellulaire</term>
<term>Paraquat</term>
<term>Populus</term>
<term>Proline</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Mélatonine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Melatonin</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">As a ubiquitous molecule, melatonin plays a crucial role in tolerance to multiple stresses in plants. In the present work, we report the role of exogenous melatonin in relieving oxidative stress induced by methyl viologen (MV) in poplar (
<i>Populus alba</i>
×
<i>Populus glandulosa</i>
) leaf. Leaf discs pretreated with melatonin exhibited increased tolerance to MV-mediated oxidative stress. It was observed that melatonin pretreatment effectively reduced membrane damage and lipid oxidation as demonstrated by decreased relative electrolyte leakage and malonaldehyde content in poplar leaf discs. Exogenous melatonin also stimulated activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX), and enhanced accumulation of non-enzymatic antioxidants of AsA and GSH in leaf discs exposed to MV. In addition, pretreatment of melatonin prompted expression of genes for those antioxidant enzymes. Notably, exogenous melatonin increased expression of
<i>P5CS</i>
, a key gene for proline biosynthesis, under MV treatment. It was further observed that pretreatment with melatonin boosted activity of P5CS as well as accumulation of proline in leaf discs under MV-mediated oxidative stress. Collectively, this work provides evidence for the ameliorative effect of melatonin on MV-induced oxidative stress in poplar leaf.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30400163</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1420-3049</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2018</Year>
<Month>Nov</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>Molecules (Basel, Switzerland)</Title>
<ISOAbbreviation>Molecules</ISOAbbreviation>
</Journal>
<ArticleTitle>Exogenous Melatonin Mitigates Methyl Viologen-Triggered Oxidative Stress in Poplar Leaf.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E2852</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/molecules23112852</ELocationID>
<Abstract>
<AbstractText>As a ubiquitous molecule, melatonin plays a crucial role in tolerance to multiple stresses in plants. In the present work, we report the role of exogenous melatonin in relieving oxidative stress induced by methyl viologen (MV) in poplar (
<i>Populus alba</i>
×
<i>Populus glandulosa</i>
) leaf. Leaf discs pretreated with melatonin exhibited increased tolerance to MV-mediated oxidative stress. It was observed that melatonin pretreatment effectively reduced membrane damage and lipid oxidation as demonstrated by decreased relative electrolyte leakage and malonaldehyde content in poplar leaf discs. Exogenous melatonin also stimulated activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX), and enhanced accumulation of non-enzymatic antioxidants of AsA and GSH in leaf discs exposed to MV. In addition, pretreatment of melatonin prompted expression of genes for those antioxidant enzymes. Notably, exogenous melatonin increased expression of
<i>P5CS</i>
, a key gene for proline biosynthesis, under MV treatment. It was further observed that pretreatment with melatonin boosted activity of P5CS as well as accumulation of proline in leaf discs under MV-mediated oxidative stress. Collectively, this work provides evidence for the ameliorative effect of melatonin on MV-induced oxidative stress in poplar leaf.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Fei</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China. fding@nwafu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Gang</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China. wang20180823@sina.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Guizhou Academy of Forestry, Guiyang 550005, Guizhou, China. wang20180823@sina.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Shuoxin</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China. sxzhang@nwafu.edu.cn.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan 711600, Shaanxi, China. sxzhang@nwafu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2015BAD07B05</GrantID>
<Agency>Ministry of Science and Technology of the People's Republic of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2018M633593</GrantID>
<Agency>China Postdoctoral Science Foundation</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Molecules</MedlineTA>
<NlmUniqueID>100964009</NlmUniqueID>
<ISSNLinking>1420-3049</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9DLQ4CIU6V</RegistryNumber>
<NameOfSubstance UI="D011392">Proline</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>JL5DK93RCL</RegistryNumber>
<NameOfSubstance UI="D008550">Melatonin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PLG39H7695</RegistryNumber>
<NameOfSubstance UI="D010269">Paraquat</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008550" MajorTopicYN="N">Melatonin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010269" MajorTopicYN="N">Paraquat</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011392" MajorTopicYN="N">Proline</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">melatonin</Keyword>
<Keyword MajorTopicYN="N">methyl viologen</Keyword>
<Keyword MajorTopicYN="N">oxidative stress</Keyword>
<Keyword MajorTopicYN="N">poplar</Keyword>
<Keyword MajorTopicYN="N">proline</Keyword>
<Keyword MajorTopicYN="N">reactive oxygen species</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>11</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>11</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30400163</ArticleId>
<ArticleId IdType="pii">molecules23112852</ArticleId>
<ArticleId IdType="doi">10.3390/molecules23112852</ArticleId>
<ArticleId IdType="pmc">PMC6278511</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Pineal Res. 2015 Aug;59(1):120-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25958881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pest Manag Sci. 2014 Sep;70(9):1316-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24307186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Feb;63(4):1593-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22291134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:601-639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Jul 1;165(4):1505-1520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24987017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Apr;98(4):1222-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Sep 29;6:792</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26483809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pineal Res. 2014 Sep;57(2):185-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24962049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biotechnol. 2010 Sep;30(3):161-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20214435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1984 Jun;139(2):487-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6476384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2015 Apr 22;20(4):7396-437</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25911967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Bioanal Chem. 2003 May;376(1):33-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12734615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):93-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21045124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pineal Res. 2013 Nov;55(4):424-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24103092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8249-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9223347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 May 21;19(5):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29883400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1998 Aug;116(1-2):9-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Sep 27;273(5283):1853-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8791589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Mol Biol Int. 1995 Mar;35(3):627-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7773197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 May 29;8:878</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28611801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3459-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15699356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Jan;6(1):36-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11164376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pineal Res. 2015 Sep;59(2):133-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26094813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Jul;10(7):1151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9668134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1980 Jul 15;106(1):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7416462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:373-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pineal Res. 2016 Nov;61(4):457-469</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27484733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pineal Res. 2016 Oct;61(3):291-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27264631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pineal Res. 2012 Oct;53(3):298-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22507106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Feb 20;8:244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28265283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Jan 21;19(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29361738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pineal Res. 2014 Apr;56(3):238-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24350934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 May 16;165(3):1367-1379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24834923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2015 Jan 14;20(1):1410-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25594348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1971 Nov;44(1):276-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4943714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Sep;157(1):292-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21791601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2008 Nov;35(4):753-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18379856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Oct 6;167(2):313-324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27716505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Aug 31;7:1339</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27642286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3175-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 28;7:575</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27200048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Feb;1847(2):212-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25448535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Nov 30;7:1823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27965706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2018 Jul 02;23(7):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30004432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Feb;15(2):89-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20036181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pineal Res. 1995 Jan;18(1):28-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7776176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Nov 03;6:925</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26579171</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Ding, Fei" sort="Ding, Fei" uniqKey="Ding F" first="Fei" last="Ding">Fei Ding</name>
</noRegion>
<name sortKey="Wang, Gang" sort="Wang, Gang" uniqKey="Wang G" first="Gang" last="Wang">Gang Wang</name>
<name sortKey="Wang, Gang" sort="Wang, Gang" uniqKey="Wang G" first="Gang" last="Wang">Gang Wang</name>
<name sortKey="Zhang, Shuoxin" sort="Zhang, Shuoxin" uniqKey="Zhang S" first="Shuoxin" last="Zhang">Shuoxin Zhang</name>
<name sortKey="Zhang, Shuoxin" sort="Zhang, Shuoxin" uniqKey="Zhang S" first="Shuoxin" last="Zhang">Shuoxin Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F11 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F11 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30400163
   |texte=   Exogenous Melatonin Mitigates Methyl Viologen-Triggered Oxidative Stress in Poplar Leaf.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30400163" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020